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When it is desired to represent a function of n variables by a series of the Fourier
type, it is customary to construct the relevant complete orthogonal set by taking
a set of functions each of which is a product of n functions of single variables.
With Walsh functions, an alternative is possible, feasible, and practically im
plementable. The principal advantage of the alternative scheme is that localiza
tion holds in the same sense as for a function of a single variable represented
by a series of the Fourier type. Another feature of the alternative method is that
the Walsh-Fourier series for certain types of discontinuous functions behave
essentially as if those functions were continuous.

1. INTRODUCTION

Since the publication of Fine's classic papers on Walsh functions [1-3],
little interest has been shown in "multiple Walsh-Fourier series" or Walsh
function representation of functions of n variables. The Walsh functions,
in Paley's definition, designated by

f(k, r), (k = 0, 1,2,...),

are defined for r E <r1 , the real line; since they are of period 1 it is customary
to study them on the unit interval

U1 = {r I°::;;; r ::;;; I}.

<rn is n-dimensional Euclidean space. The unit n-cube is

Un = {x I°::;;; Xi ::;;; 1, i = 1,2,... , n}.

Let g(x) be a real valued integrable function defined on Un' In analogy with
trigonometric Fourier series, it has been assumed that the appropriate
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procedure, if a Walsh-Fourier series for g is desired, is to consider series of
the form

The failure to study this system of multiple Walsh functions is partially
due to the extreme simplicity of many of the standard problems, given the
technique that has been developed for trigonometric Fourier series, both
ordinary and multiple, and for ordinary Walsh-Fourier series. However,
some problems are relatively difficult, owing to some important differences
between Walsh and trigonometric functions. As Fine pointed out, one of the
most important differences between ordinary Walsh sreies and ordinary
trigonometric series is that the Fejer kernel for the former is relatively ill
behaved.

The most striking difference between ordinary and multiple Fourier series,
whether of Walsh or trigonometric functions, is that the principle of
"localization" does not hold in the latter case. This fact is a direct conse
quence of the product form

(1)

(allowing the 0/, temporarily, to be either trigonometric or Walsh functions),
and is inescapable without making exceedingly strong assumptions about g,
such as that it is bounded on Un [9, Chap. 17], which is just another way of
saying that the behavior of a multiple Fourier series in a neighborhood may
depend on the nature of g at points remote from the neighborhood.

This paper presents an alternative Walsh system for representation of
functions of n variables. Since the new system is not a "multiple Walsh
Fourier series," Le., the product form (1) is not employed, localization holds
and the localization theorems are not only essentially similar to those of the
single variable case, but follow directly from them. For the sake of clarity,
the presentation is relatively informal.

II. WALSH FUNCTIONS

Let fer) be Lebesgue integrable on [0, 1] and periodic with period 1
(thus, iff were further specified as continuous, it would be necessary that
j(O+) = j(1-)). The Walsh-Fourier coefficients are

ak = rj(r) o/(k, r) dr,
o



the partial sum

and the Cesaro sum

WALSH-FOURIER SERIES

m-I

sm(r) = I akif;(k,r),
h:=O I

) M
aM(r) = M L sm(r).

m=l
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The following are important properties of the Walsh functions in respect to
Walsh-Fourier series:

1. a'e ---+ °as k ---+ 00.

2. Define the moduli of continuity

[to(D,f) = sup II(r + h) -f(r)l,
Ih!<a

.1

[tI(D, f) = sup I !fer + h) - I(r)1 dr.
Ihlc;a '0

Then, for k > °
1 ak 1 :(; [to(l!k,f)!2,

I ak I :(; [tI(l!k, f).

As a corollary, ifI E Lip a, °< a :(; I, then

3. If I is of bounded variation on (0, 1) and D is its total variation
over (0, 1), then

k > 0.

4. Iflis absolutely continuous and ak = o(I!k), then I = constant.

5. IfI is continuous at 1', then aM(r) ---+ f(r). IfI is continuous, aM ---+ I
uniformly. If a > 0, sm(r) is (C, a) summable tola.e.

6. (i) s2m(r) ---+ f(r) a.e. as m ---+ 00, in particular, at every point of
continuity.

(ii) If I is continuous in an interval (1'1,1'2)' then s2m(r) ---+ fer)
uniformly as m ---+ 00, in any subinterval [PI, P2], where 1'1 < PI < P2 < 1'2 .

(iii) IfI is of bounded variation and l' is either a point of continuity
or a dyadic rational, sm(1') converges.
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(iv) Ifjis of bounded variation and r is neither a point of continuity,
nor a dyadic rational, then sm(r) diverges.

(v) For any r, there exists a continuous function whose series
diverges at r.

(vi) If j is continuous and

as 0 ---+ 0, thens", ---+ juniformly. Thus, ifjEO Lip ex, ex> 0, Sm ---+ juniformly.

(vii) If j is continuous and of bounded variation on [0, I], Sm ---+ j
uniformly (both (vi) and (vii) can be broadened somewhat).

(ix) There exists an V function such that s'" is divergent a.e.

(x) If j is an V function, Sm ---+ j a.e.

7. (i) If s'" converges to zero uniformly except in the neighborhood
of a finite number of points (i.e., if there exists a set of points r1 , r2 , ••• , rN

such that, for any 0 > 0, Srn ---+ 0 uniformly on the set R = {r 1 r EO VI ,

[ r - ri i ~? 0 for i = I, 2, ... , N}), then a" = 0 for all k.

(ii) If Srn ---+ 0 except on a denumerable set, then ale = 0 for all k.

(iii) If Srn converges to an integrable function except on a denumer
able set, the series is the Walsh-Fourier series of the function.

8. If f(r) = 0 in an interval (r1 , r2), then s",(r) ---+ 0 uniformly as
m ---+ 00, in any subinterval [PI' P2], where r 1 < PI < P2 < r2 .

The last property is the localization principle for Walsh-Fourier series,
essentially as it was expressed in Walsh's original paper. The subject can be
considerably elaborated and expanded, as was done by Fine. However, here
we treat the subject of localization in the original and simplest sense of the
term.

III. HILBERT'S SPACE FILLING CURVE

Hilbert's space filling curve hn [10, Vol. 1, Chap. 5] is a function mapping
the unit interval onto the unit n-cube continuously; Un = hn(V1). It has
properties particularly compatible with dyadic number representations, and
thus, with Walsh functions.

Regard n > I as fixed. For an integer k ~ 0 the set "f~ is the set of 2nl
'

intervals of the form
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where m = 1,2,... , 2n ". Thus, Vk,m E i/'k' Similarly, define the set 1f/;, of
2nk n-cubes of the form

where p and Ik.P,i are integers, I ~ p ~ 2n", 1 ~ h,P,i ~ 21., and the Ire,P,i

are such that the collection of 21''' n-cubes Wk,p E "/Fk covers Un .
The principal relevant feature of Hilbert's space filling curve hn is that any

interval Vk,m maps continuously onto some n-cube Wk,p • For this reason, the
l",p,i can be chosen such that

(2)

The relationship (2) is obvious from the geometric manner in which Hilbert
exhibited his curve (Fig. I). It is also clear that hn is measure preserving.

II
FiG. J. Hilbert's space filling curve is the limit of this sequence.

A function g(x), x E Un, is Lebesgue integrable in Un iff fer) = g(hnCr)) is
Lebesgue integrable in U1 ; f is termed here the image of g.

When n = 2, Hilbert's space filling curve is unique except for obvious
rotations in U2 • When n > 2, such uniqueness does not hold for space
filling curves possessing the one to one relationship between intervals Vk,m

and n-cubes Wk,m (the distinguishing feature of Hilbert's curve). One specific
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hn for general n has recently been studied in detail, and specific algorithms
for calculating x = hn(r), given r, were presented [11-13].

Each x E Un has an inverse image in UI , under the mapping hn , which
consists of at most 2n points. If no component of x is dyadic rational, the
inverse image is a single point. If X C Un , and R C UI is the set of inverse
images of points x E X, then R is called the inverse image of X.

Obviously, the set of points in Un , each having an inverse image consisting
of more than one point, is of measure zero. Thus, given any function 1'(r)
defined on (£1 , there exists a function g(x), x E Un, whose image f ~~ l' a.e.
in UI .

Let 0 be the n-vector (0, 0, 0, ... , 0, 0, 0) and let u be the n-vector
0,0,0, ... ,0,0,0). The hn studied in [11-13] have the property that r = °
is the inverse image of x = 0, and that r = 1 is the inverse image of x = u.
Henceforth, we assume that hn has this property.

Any function 8n: Un -+ UI that has the property

for all x E Un , is termed an inverse of hn .
For any n ?: 2 and q, 1 ~ q ~ 00, there exist constants °< ulto <

ultl < 00 such that for any r E UI and x = bir) E Un'

(i) For every r' E UI

where x' = bn(r').

(ii) For any 0 > 0, there exists r" E U1 such that I r" - r I < 0 and

II x" - x Ilq ~ ulto I r" - r 1
1
/",

where x" = bn(r").

The one to one relationship between intervals Vk •m and n-cubes W k •m

immediately implies what we call the finite covering property.

Finite Covering Property

For x E Un, let X2 be an open (in U,,) sphere and let Xl be a closed sphere
centered at x

Xl = {y lyE Un , II y - x IIq ~ PI},

X2 = {y lyE Un, II y - x Ilq < P2},

with °< P1 < P2 < 00. Let RI and R2 be the inverse images of Xl and X2 ,
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respectively. Then, Rl CAe B C R2 , where A and B are each the union of
a finite number of disjoint closed intervals:

N

A = UAi'
i=l

N

B= UBi'
i=l

where
bi •2 < bi+l,l,

if N > 1 and, if 0 1= Xl and u 1= Xl ,

i = 1,2,...,N-l,

bi,l < au < ai,2 < bi ,2 , i = 1,2,... , N.
(3)

If 0 E Xl , conditions (3) must be modified so that bl,l = al,l = O. Likewise,
if u E Xl , bN •2 = aN .2 = 1.

If g(x) is continuous on Un, then its image fer) is continuous on UI ,

but f is not necessarily equal to a function that is continuous and periodic
on (£;1 (with period 1). For this, it is required in addition that g(O) = g(u).

Ifg(x) is equivalent (equal a.e. on Un) to a functino g'(x) that is continuous
on Un and has the property g'(O) = g'(u), then its image fer) is equivalently
continuous and periodic (equal a.e. in UI to a function that is continuous
and periodic on (£;1)' The converse, however, is not true, as can be easily
shown by example. The particular h2 of Fig. 1 has the property that if
x = h2(r), r E UI , then 0 ~ r ~ t implies 0 ~ Xl ~ t, t ~ r ~ 1 implies
t ~ Xl ~ 1, and h2(t) = (t, t). Thus, a function (n = 2)

g(x) = X 2 ,
(4)

which has the property g(O) = g(u), but is not equivalently continuous, has
an image f that is equivalently continuous and periodic, for the only
discontinuities of the image are due to values taken by fer) at points in the
inverse image of the set {x [ Xl = t, 0 ~ X 2 ~ I}.

It is not possible, however, to characterize functions g whose images are
equivalently continuous and periodic without making very specific reference
to properties ofhn • This is seen by considering the function (n = 2) g'(x) = Xl

for 0 ~ X 2 ~ to = 1 - X 2 for t < X 2 ~ 1, whose image is not equiv
alently continuous and periodic, although one would normally consider it
the same sort of function as the g(x) of (4).
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These considerations motivate the following definition. Let X C Un' and
let R CUI be the inverse image of X. We say g(x) is image continuous on X
iff its image f(r) is equivalent to a periodic function that is continuous on R
(for any r E R, for any E > 0, there exists D> 0 such that r' E (\;1 and
1 r' - r I < D imply I fer') - f(r)1 < E; note the specification of (\;1 rather
than R). When it is said that g(x) is image continuous, without specification
of X, it is implied that X = Un' If it is said that g is image continuous at x,
this means that X consists of the single point x.

Continuity on a set X does not imply that g(x) is image continuous on X.
For example, let g(x) = 0 in an E-neighborhood of (and including) x = 0
and g(x) = I in an E-neighborhood of (and including) x = u. However,
g is not image continuous on either E-neighborhood, since the image of g is
not equivalent to a periodic function that is continuous at r = 0 or r = 1,
both of which points are in the inverse images involved. However, we can say:

Let g be continuous. Then, g is image continuous iff g(O) = g(u).
Let XC Un be open in Un' and let g be continuous on X. If either 01: X

and u 1: X, or 0 E X and u E X and g(O) = g(u), then g is image continuous
on X.

IV. WALSH FUNCTIONS FOR Un

Let hn : U1 ---+ Un be Hilbert's space filling curve and let On: Un ---+ U1

be an inverse of hn • The Walsh functions for Un are designated o/n and are
defined for n ?: 2 thus

o/n(k, x) = o/(k, 0n(x»,

'2

k = 0, 1,2,....

D·" •. _,
1Jt (13,r)

L
i,---- -~----------+--,--r,

FIG. 2. IM13, x) and .p(l3, r).
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An example is given in Fig. 2, where the relationship between Y;2(13, x)
and y;(l3, r) is illustrated. It is obvious that Y;2 is not a product of a function
of Xl and a function of X 2 • It is also clear that the Y;n constitute a complete
orthonormal set, since if g(x) were orthogonal to all Y;n(k, x), then fer), the
image of g, would be orthogonal to the ordinary Walsh functions y;(k, r).

Let g(x) be an integrable function on Un' and let fer) be its image. The
Walsh-Fourier series for g

00

g(x) R:; I akY;n(k, x) = s<n)(x),
k~O

ak = f Y;n(k, x) g(x) dx.
Un

00

fer) R:; I aky;(k, r) = S(r),
k~O

s<n)(x) may be studied merely by studying the Walsh-Fourier series for f
since it is the case that

ak = ry;(k, r)j(r) dr,
o

Slnl(X) = S(Bn(x».

The partial sum

m~l

s~)(x) = I akY;n(k, x) = sm(Bn(x»
k~O

and the Cesaro sum

ut;)(x) = ~ f s~n)(x) = uM(Bn(x».
m~l

G(x) is defined as the set of limits of the function g for sequences con
verging to x, i.e., the real number y E G(x) iff there exists a sequence {Xi}'
Xi E Un' Xi ---+ X, such that g(x;) ---+ y (the values y = ± 00 are allowed).
The expression Yi ---+ G(x) is interpreted as meaning Yi ---+ Y, where Y E G(x).
If it is said that a sequence of functions Yi(X) ---+ G uniformly on X, this
means that there exists a function y(x) such that y(x) E G(x) for every
x E X C Un , and that y;(x) ---+ y(x) uniformly on X.

Combining the properties of ordinary Walsh-Fourier series (Section II)
with those of hn (Section III) one easily arrives at the following properties
of S(n);

I'. ai' ---+ 0 as k ---+ 00.

2'. If g E Lip ex, 0 < ex .:s:; n, and g(O) = g(u), then
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5'. If g is image continuous at x, then O'~)(x) -+ G(x). If g is image
continuous, then O'~) -+ G uniformly on Un' If (X > 0, s~) is (C, (X) summable
to G, a.e.

6'. (i) s~~) -+ G a.e. as m -+ 00, in partciular, at every point x where g
is image continuous.

(ii) Let X 2•i designate an open sphere in Un and Xl,i C X 2 •i a closed
subsphere of X 2•i . Let sets X 2 and Xl consist of finite unions of such spheres:

N

X 2 = U X 2•i ,
i~l

N

Xl = U XLi'
i~l

Assume that either 0 rt Xl and u rt Xl' or 0 E Xl and u E Xl . If g is image
continuous on X 2 , then s~~) -+ G uniformly on Xl . This property is a direct
consequency of property 6(ii) of Section II and of the finite covering property.

(v) For any x E Un, there exists an image continuous function
whose series diverges at x.

(vi) If g E Lip (x, (X > 0, and g(O) = g(u), then s~) -+ g uniformly.

(viii) If g E Lip (x, (X > nf2, and g(O) = g(u), then s~) converges
absolutely.

(ix) There exists g E Ll such that s~) is divergent a.e.

(x) If g E V, s:;) -+ g a.e.

7'. (i) If s~) converges to zero uniformly in Un except in the neigh
borhood of a finite number of points, then ak = 0 for all k. This is a direct
consequence of property 7 of Section II, and of the continuity of hn •

(ii) If s~) -+ 0 except on a denumerable set, then ak = 0 for all k.

(iii) If s~) converges to an integrable function except on a denu
merable set, the series is the Walsh-Fourier series of the function.

8'. Let X 2•i designate an open sphere in Un and Xl •i C X 2,i a closed
subsphere of X 2•i . Let sets X2 and Xl consist of finite unions of such spheres:

N

X2 = UX 2 •i ,
i=l

N

Xl = U Xl .i •
i~l

Assume that either 0 rt Xl and u rt Xl , or 0 E Xl and U E Xl . If g = 0 on X 2 ,

then s~) -+ 0 uniformly on Xl'

The last property is a direct consequence of property 8 of Section II and
of the finite covering property. It is the localization property for Walsh
Fourier series of the new functions, and appears to be the major justification
for proposing these functions. Note that localization holds in essentially
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the same sense as it does for ordinary Walsh-Fourier series of a single
variable. That the behaviors of Sln)(x) at the points x = 0 and x = u are
mutually dependent does not compromise this claim, since the same sort of
situation holds for S(r) for the points r = 0 and r = 1.

V. REMARKS

A certain amount of selectivity was practiced in organizing the list of
properties noted in Sections II and IV. Although the properties chosen are
obviously not near to being exhaustive in respect to what is known about
Walsh functions, we feel that they were an appropriate selection for this paper.

Some of the properties of ordinary Walsh-Fourier series that are listed in
Section II are not reflected in analogs among the properties of s(n) that are
listed in Section IV. Specifically, the concept of the modulus of continuity
of a function fer), the concept of a function fer) of bounded variation, and
the concept of an absolutely continuous function fer), failed to be reflected
in analogous properties of g(x). This failure is certainly not due to the
impossibility of finding analogs of the relevant theorems listed in Section II.
Indeed, the generation of the analogs would be almost trivial. They have
not been listed here, partially on account of their near triviality, and partially
because they entail such peculiar manners of regarding functions defined
on Un that it was felt that the appropriateness of making the necessary
definitions, and stating the relevant properties, was somewhat questionable.
For the same reasons, we have avoided stating analogs of the more elaborate
features of Fine's theory of localization.

It is conceded that a similar objection could be made to the concept of
"image continuity," likewise a peculiar manner of regarding a function g(x).
However, there are two reasons why it is believed that the introduction of
the concept of image continuity is appropriate. First, except for the qualifi
cation involving the points x = 0 and x = U, ordinary continuity implies
image continuity. By contrast, no ordinary description of a function g(x)
leads to the modulus of continuity of its image, the bounded variation of its
image, or the absolute continuity of its image. Second, image continuity has
practical significance. This is illustrated by the g(x) of (4), a discontinuous
function that, however, since it is image continuous, has a Walsh-Fourier
series that behaves essentially as if g were continuous. One may then proceed
to observe, e.g., that the imagefis equivalent to a function in Lip t, and thus,
Ok = fJ(k-1

/
2
). The general nature of the practical possibilities involved here

is obvious. No such possibilities arise with multiple Walsh-Fourier series.
There appear to be no problems of practical implementation, associated

with the series s<n), that are not also present with ordinary multiple Walsh-
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Fourier series. Practical use of the new functions would often require
calculation ofhn(r) or 0n(x), or both, but this is not believed to be a significant
drawback. Fast Walsh-Fourier transform algorithms, of the Cooley-Tukey
type, may be applied to the image functionf(r) without modification.

It is hardly necessary to point out that similar constructions are possible
with trigonometric functions. Functions of the form exp(£'27Tk0nCx)), where
£' = (-1)1/2, constitute a complete orthogonal set for Un and the corre
sponding Fourier series would have localization properties. However,
functions of this sort are relatively badly behaved when compared to ordinary
trigonometric functions; they are not likely to be satisfactory for represen
tation of functions g(x) in cases where ordinary trigonometric fnuctions are
considered appropriate, especially on account of their abundance of jump
discontinuities. The "Walsh functions" 1n(k, x) = 1(k, On(x)), by contrast,
do not have any general qualitative feature not possessed by ordinary Walsh
functions, and thus, would most likely be satisfactory in cases where ordinary
sorts of Walsh representations are considered satisfactory.
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